Bayesian network is a very effective tool to express uncertain knowledge and is used in many research fields widely. 贝叶斯网络作为一种表达不确定性知识的有效工具,在许多领域都得到了广泛的应用。
Bayes Network is a new inference and express method of uncertain knowledge. 贝叶斯网络是不确定性知识表达与推理的一种新方法。
Expert System Building Tool Capable to Deal with Uncertain Knowledge 一个可处理不确定性知识的专家系统开发工具
Qualitative representation, inference and their application of uncertain knowledge: a survey on qualitative probabilistic networks 不确定性知识的定性表示、推理及其应用&定性概率网研究综述
Uncertain Knowledge Expression to the Decision Rule of Incomplete Information System 不完备信息系统中决策规则的不确定性表示
Uncertain inference is a process of deriving consequences from uncertain knowledge or evidence via the tool of conditional uncertainty. 不确定推理是利用条件不确定性由不确定知识或证据出发作出推论的过程。
Intrusion alert correlation method based on uncertain knowledge discovery 基于不确定性知识发现的入侵报警关联方法
Uncertain knowledge in robot planning 机器人规划中的不确定知识
Aiming at the uncertain knowledge and information in the design scheme decision-making, a multi-targets and factors system level gray correlation analysis model was established. 摘要针对设计方案决策中存在许多不确定的知识和信息问题,提出一种处理多层次、多因素客观信息的系统层次灰关联分析理论模型。
Design an instruction knowledge layered model and information model, and use certainty factor and fuzzy technology to represent uncertain knowledge. 提出了网络教学中的领域知识层次模型和以学习单元为核心的领域知识信息模型。并采用确定性因子和模糊技术表示不确定性的领域知识。
Bayesian network is one of the most efficient models in the uncertain knowledge and reasoning field. 贝叶斯网络是目前不确定知识和推理领域最有效的理论模型之一。
The knowledge in the ES adopts the production systems, which can express the certain and uncertain knowledge. 专家系统中的知识采用启发式表示,知识可以表示成确定性和不确定性知识。
This model takes into account many related elements comprehensively, and processes uncertain knowledge in uncertainty reasoning effectively. 该模型能综合考虑诸多因素,有效处理安全性分析中的不确定知识。
This algorithm can deal with fuzzy causality diagram, which has multiple value, and effectively express the fuzzy uncertain knowledge in practice. 该算法能够处理模糊的多值因果图,有效地表达实践中模糊的不确定性知识。
It is a very difficult problem in machine learning to learn uncertain knowledge automatically without prior domain knowledge. 在没有领域先验知识条件下的不确定知识主动式学习是机器学习领域中的一个难题。
Functions of uncertain knowledge representation and reasoning with learning in expert system 专家系统中不确定性知识表示与学习推理
The main issues addressed are uncertain knowledge representation and approximate reasoning based on fuzzy set theory. 本文主要探讨了基于模糊集合理论的不确定知识表示和近似推理方法。
Furthermore, author delved the information's uncertainty of diagnosis system, analyzed the reason and studied the representation methods of uncertain knowledge and common model of uncertain ratiocination. 还详细探讨了诊断系统中信息的不确定性问题,分析了诊断系统不确定性产生的原因,研究了不确定性知识的表示方法及不确定性推理的一般模型;
Rough sets, as a new hotspot in the field of artificial intelligence, can effectively deal with the expression and deduction of incomplete, uncertain knowledge. 粗糙集理论作为人工智能领域的一个新的研究热点,它能够有效地处理不完整、不确定知识的表达和推理。
Uncertain knowledge representation and processing are involved in this paper. 本文涉及到不确定性知识表示和推理。
Rough set is a mathematical tool of processing unpreciseness and uncertain knowledge. RoughSet理论是一种研究不精确和不确定性知识的数学工具。
Incidence calculus is an automated mechanism about uncertain knowledge. 发生率计算是有关不确定性知识的一个自动推理机制。
Then uncertain knowledge presentation in the knowledge database and data mining method based on cloud model are given. 然后给出了基于云模型的知识库中知识的不确定表示,以及基于云模型的数据挖掘方法;
Uncertain knowledge representation and management in mining engineering expert system 适用于采矿工程专家系统的不确定性知识表示和处理方法
Rough set theory and Concept Lattice theory are two different mathematical methods for represent the uncertain knowledge. 粗糙集和概念格是处理数据的两种不同的数学方法。
Ultimately, driven reasoning by fuzzy rough ontology achieves though ontology reasoning and solves the reasoning problems of uncertain knowledge. 最终实现了模糊粗糙本体的推理功能,解决了不确定知识的推理问题。
This theory, as a kind of theory for data analyzing, is a new type of mathematical tools to deal with fuzzy and uncertain knowledge. 该理论作为一种数据分析理论,是一种新型的处理模糊和不确定知识的数学工具。
It can effectively deal with incomplete and uncertain knowledge representation and reasoning. 它能够有效地处理不完整、不确定知识的表达和推理。
However, the research of representation for uncertain knowledge has been developed less owing to its complication. 相对而言,对于临床指南中不确定知识表达的研究由于其复杂性目前还需要进一步发展。
Graphical models are important methods for uncertain knowledge representation and reasoning in Artificial Intelligence. 图模型是人工智能学科表示、处理不确定知识的重要方法。